K-stability of constant scalar curvature Kähler manifolds
نویسنده
چکیده
We show that a polarised manifold with a constant scalar curvature Kähler metric and discrete automorphisms is K-stable. This refines the K-semistability proved by S. K. Donaldson.
منابع مشابه
Relative K-stability for Kähler Manifolds
We study the existence of extremal Kähler metrics on Kähler manifolds. After introducing a notion of relative K-stability for Kähler manifolds, we prove that Kähler manifolds admitting extremal Kähler metrics are relatively K-stable. Along the way, we prove a general Lp lower bound on the Calabi functional involving test configurations and their associated numerical invariants, answering a ques...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملBlowing up Kähler manifolds withconstant scalar curvature, II
In this paper we prove the existence of Kähler metrics of constant scalar curvature on the blow up at finitely many points of a compact manifold which already carries a Kähler constant scalar curvature metric. Necessary conditions of the number and locations of the blow up points are given. 1991 Math. Subject Classification: 58E11, 32C17.
متن کاملFibrations with Constant Scalar Curvature Kähler Metrics and the Cm-line Bundle
Let π : X → B be a holomorphic submersion between compact Kähler manifolds of any dimensions, whose fibres and base have no non-zero holomorphic vector fields and whose fibres admit constant scalar curvature Kähler metrics. This article gives a sufficient topological condition for the existence of a constant scalar curvature Kähler metric on X. The condition involves the CM-line bundle—a certai...
متن کامل(kähler-)ricci Flow on (kähler) Manifolds
One of the most interesting questions in Riemannian geometry is that of deciding whether a manifold admits curvatures of certain kinds. More specifically, one might want to know whether some given manifold admits a canonical metric, i.e. one with constant curvature of some form (sectional curvature, scalar curvature, etc.). (This will in fact have many topological implications.). One such probl...
متن کامل